Introduction

Currently the major goals in the area of space electronics for NASA are to make them ever smaller and radiation-hard.  Currently, space electronics are based on silicon, but unfortunately, silicon is not radiation hard.  Due to their nanometer-scale size, purported stability, well-documented high conductivity and Young's modulus, carbon nanotubes may be ideally suited to applications in space electronics.  Hence, the purpose of this project is to examine the effect of ionized radiation on the mechanical and electronic properties of carbon nanotubes and determine their suitability to space applications.  Results from samples grown at the University of Michigan in an inductively coupled plasma (ICP) system, CNTs produced at NASA and

Tubes@ Rice which are known single-walled carbon nanotubes, will be compared in this paper.

Methods

The carbon nanostructures were produced at the University of Michigan by placing a Si wafer onto which 10-20 nm of Fe were laser ablated, inside the ICP system for approximately five and a half hours. The plasma contained 87% Argon, 6.5% Methane and 6.5% Hydrogen.  The carbon nanotubes from NASA were produced using the DC arc-discharge method and cleaned using the cleaning process developed by Dr. Benavides.  Tubes@Rice, which are single-walled carbon nanotubes are from Rice University.  They were produced by Dr. Smalley’s group via laser vaporization of graphite as described in their 1995 paper
.

These samples have thus far been examined prior to radiation using Transmission Electron Microscopy (TEM) and micro-Raman Spectroscopy (at 514.5 nm).    For Transmission Electron microscopy, a Hitachi-800 Transmission Electron Microscope (200 KeV, .00251 nm wavelength) was used.  The Micro-Raman system was consists of an Argon-ion laser, monochromator, photo-multiplier tube (PMT) and optical microscope set-up in back-scattered configuration 

Results
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Figure 1: Carbon nanotubes grown at NASA Goddard Space Flight Center

(DC-arc discharge method, bar = 400 nm)
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Figure 2: Raman of NASA sample A04 in Tangential mode region @ 514.5 nm deconvoluted using PeakFit with Gaussian Peak Amplitudes
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Figure 3: Raman of NASA sample A06 in Tangential mode region @ 514.5 nm deconvoluted using PeakFit with Gaussian Peak Amplitudes
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Figure 4: Raman of NASA sample A07 in Tangential mode region @ 514.5 nm
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Figure 5: TEM of single carbon nanostructure grown in ICP system (bar = 40 nm)
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Figure 6: TEM of lower portion of the above carbon nanostructure (bar = 25 nm)
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Figure 7: Raman of wafer containing carbon nanostructures above in Tangential mode region @ 514.5 nm deconvoluted using PeakFit with Lorentzian peak amplitudes
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Figure 8: TEM of Tubes@Rice (bar = 40 nm)
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Figure 9: Raman of Tubes@Rice in the Tangential Mode Region at 514.5 nm
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Figure 10: Raman of Tubes@Rice deconvoluted using PeakFit with Lorentzian Peak Amplitudes
Discussion and Future Work

Currently, as can be seen by comparing the Raman results (prior to exposure to radiation) of the NASA samples with that of Tubes@Rice, while the NASA samples show promise, whether they are single or multi-walled carbon nanotubes cannot be determined at the 514 nm wavelength.   These samples clearly need to be examined at the 633 nm wavelength with a Helium-Neon laser, which provides for better coupling and examination of the radial breathing modes.  The TEM micrographs provide some insight into the average dimensions of the nanotubes as well as to their crystallinity.  However, whether the CNTs are multi-walled or single-walled must be determined using HR-TEM.  Also, the irradiation of the NASA samples, Tubes@Rice and the samples grown with ICP at the University of Michigan, is expected to be done early this year.
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