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What are Multilayer Ceramic Capacitors (MLCCs)?
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• MLCCs are monoliths of dielectric oxide and alternated internal 
metals co-fired at around 1350 oC

• Capacitance:

• Challenges: 
– Dielectric needs oxygen for insulating resistance (IR)
– Electrode needs no oxygen for conducting

• Solution: 
– The first MLCCs were made with oxidation resistance precious metal 

electrodes (PME) made from combinations of Ag, Pt, and Pd



Why Change from PME to BME?
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• High materials cost plus questionable supply assurance forced an 
industry shift from PME to base metal electrode (Ni, Cu) technology 
(BME) for commercial applications
 Palladium: $675/oz on 1/20/2012 ($1080/oz in 2/2001)
 Nickel: $0.61/oz on 1/20/2012 ($1.65/oz in 4/1007)
 Russia controls 90% of world palladium supply?

• The change was totally driven by economics!



PME vs. BME:  The Reality
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• 99% of MLCCs worldwide are manufactured using BME technology
 Lion’s share of research activity and technical support
 Complete selection of products with short lead time
 Low cost

• NASA had used BME capacitors for some non-critical applications
 NASA cautious to new technologies due to type of business
 Restrictions in MIL-PRF-123
 Concerns regarding the reliability of BME technology

• It is just a matter of time to begin using BME capacitors for high 
reliability applications
 Several hybrid manufacturers have used BME capacitors for space-

level products
 Comparable reliabilities and better performance
 Limited product selection for PME products and long lead time
 BME technology is more than 20 years old

• It is about time to take action!



A Glimpse of BME Technology
• BMEs represent a commercial technology, developed for 

high volumetric efficiency (F/cm3) applications, not for 
high-reliability applications.  However, BME capacitors can 
be manufactured for high-reliabilities comparable to PME 
capacitors.

• To meet the high demand for volumetric efficiency, 
manufacturers have pushed the technology envelope to 
the limit:
– Number of dielectric layers N: >500 → 1000
– Dielectric thickness: <1.0 m, → 0.5 m or less

• To meet the high demand for volumetric efficiency, 
suppliers and end users have mutually agreed to lower the 
bar for reliability:
– Life test:     2X rated voltage → 1.5X, 1.25X, 1.0X
– Dielectric:  X7R characteristics → X5R
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MLCCs for High-Reliability Applications
• The reliability of an MLCC device is determined by its 

microstructure.  An MLCC can’t be qualified for high 
reliability; it has to be made for it!

• Historically, the minimum dielectric thickness requirement 
per MIL-PRF-123 has ensured that most PME capacitors 
have been able to be used for high-reliability applications 
for many years without major issues.

– MIL-PRF-123, paragraph 3.4.1:  Dielectric parameters.  Capacitors 
supplied to this specification shall have a minimum dielectric 
thickness of 0.8 mil (20 m) for 50 volt-rated capacitors or 1 mil (25 
m) for capacitors with ratings above 50 volts.

– MIL-PRF-123 requires all MLCCs for high-reliability and space projects 
to be PME capacitors.

• A simple dielectric thickness requirement may not qualify 
BME products for high-reliability applications due to their 
complexity and diversity with regard to capacitor structure.
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What Determine the Reliability of a MLCC? 
1. Number of Dielectric Layers N

Total capacitance:

Total reliability:

Weibull reliability: : Dielectric reliability
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What Determine the Reliability of a MLCC? 
1. Number of Dielectric Layers N

• The reliability of an MLCC Rt decreases with increasing N. Rt is almost independent 
from N if the reliability of the dielectric layer Ri is very close to unity.

• The N will make the Rt go from bad to worse quickly if Ri  declines only slightly, 
demonstrating the amplifying effect of N.

• Most BME capacitors have a very high N value, and so they pose higher challenges 
to the reliability of the single-layer dielectric Ri .
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What Determine the Reliability of MLCC?
2. Microstructure Parameter 

• Important microstructure parameter of a single-layer 
capacitor:

:       Number of stacked grains per 
dielectric layer

Dielectric 
Thickness d

Average Grain Size  



What Determine the Reliability of MLCC?
3. Voltage Robustness vs. 
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• A number of commercial BME capacitors, all with 25 V rated 
voltage and various chip sizes and capacitance, have 
significantly different dielectric thicknesses.

• The number of stacked grains per layer is relatively unvaried, 
indicating that       is a determining factor for the rated voltage.

Capacitor 
ID

Cap (F) Chip Size Mfg.
Processing 
Technology

Dielectric 
Thickness (m)

Avg. Grain 
Size (m)

A08X22525 2.20 0805 A BME 3.5 0.31 11.29
A08X15425 0.15 0805 A BME 9.8 0.46 21.30
A06X10425 0.10 0603 A BME 7.6 0.47 16.17
B06X22425 0.22 0603 B BME 4.2 0.34 12.35
B08X33425 0.33 0805 B BME 5.8 0.42 13.81
B08X10525 1.00 0805 B BME 4.6 0.40 11.50
C06X10525 1.00 0603 C BME 3.1 0.44 7.05
C08X22525 2.20 0805 C BME 4.0 0.32 10.26



What Determine the Reliability of MLCC?

4. Mean-Time-To-Failure (MTTF) vs. 
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• MTTF is directly related to the microstructure parameter       .

• Longer MTTF is attainable with higher       values (left).

• When applied voltage per grain is adjusted to a similar value, all 

four MLCCs with different       values show similar MTTF values.



How to Characterize MTTF?  HAST
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• Highly Accelerated Stress Testing (voltage and temperature typical): 

 Reverse Power Law (Eyring Model):

• Use-level Weibull probability plots are extrapolated using a maximum 
likelihood estimation algorithm for each failure obtained at a given 
overstress condition.  This can be done using ALTA-Pro!
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How to Characterize MTTF?  HAST (2)

• Use-level MTTF data for a BME capacitor can be normalized into 
one plot for better comparison.

• In many cases, calculated MTTF using dielectric wearout failure 
mode is longer than that obtained experimentally. (Why?)

Calculated MTTF Data Using Exponential Law
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Reliability of MLCCs:  Mixed Failure Modes

• If the assumed model adequately fits the data, then the residuals should appear to 
follow a straight line on such a probability plot.

• The standardized residual plot shows scattering and outliers.

• Two possibilities:
 Early failures can’t be 100% removed ( > 1, failure rate increase with time).
 The two failure modes are competing with each other.  (Under certain 

conditions, a unit can fail in either one of the two failure modes.)
• Early failures present the worst-case scenario and would determine the reliability 

of an MLCC!

Calculated MTTF Data Using Reverse Power Law
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How to Distinguish the Failure Modes?  By Leakage Current 

• Leakage current characteristics are experimentally distinguishable:  precursing 
vs. non-precursing.  (Arrows indicate precursing breakdown.)

• The higher the external stress, the more failures with non-precursing breakdown.
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How to Distinguish the Failure Modes?  By Leakage Current (2)

• Non-precursing breakdown:  catastrophic and rapid, no sign of breakdown 
(avalanche-like).  It occurs early and corresponds to early failure defect.

• Precursing breakdown:  slower and more gradual leakage current increase 
prior to breakdown (thermal runaway-like).  It corresponds to traditional 
dielectric wearout.

• Slow degradation:  unique for BME capacitors due to oxygen vacancy 
migrations.  Indistinguishable from precursing breakdown mode.
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How to Characterize Early Failures:  Failure Analysis
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• A number of failure analyses (FA) have been processed for BME 
MLCCs that failed with precursing leakage breakdown and that failed 
with non-precursing leakage breakdown.

• FA samples that failed with non-precursing breakdown normally 
revealed some visible localized failure sites, likely due to extrinsic
processing defects.

• High carbon concentrations were often observed at these failure 
sites.  Contaminations were likely introduced during manufacturing 
(as shown above), i.e., binder residuals.



How to Characterize Early Failures:  Construction Analysis
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• Cross-section SEM examination of 50+ samples per EIA-
469D revealed some voids and minor delamination; cracks 
were rarely observed.

• Defect feature size r is generally related to the average 
grain size : 

where c is a constant



A Reliability Model Due to Defects

Deliverable to NASA Electronic Parts and Packaging (NEPP) Program to be published on nepp.nasa.gov. 19

Dielectric 
Thickness d

Defect 
Feature 
Size r

Dielectric 
Thickness d

Defect 
Feature 
Size r

P is a geometric factor that determines the dielectric reliability
with respect to the microstructure of an MLCC.

For  Weibull model:

Since:

Dielectric layer reliability:

We have:
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α is an empirical constant that depends on the processing conditions 
and microstructure of a ceramic capacitor.  

α ≈ 6 (V ≤ 50) and α ≈ 5 (V >50) For BME MLCCs
α ≈ 5 for most PME MLCCs

In many cases:

With External Stress: 

We have:

So finally a single layer dielectric reliability can be simplified as:

A Reliability Model Due to Defects (Cont’d)



Case Study:  Selection of BME MLCCs
for High-Reliability Applications
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3.  Reliability with respect to N and       :

2.  Single-layer dielectric reliability:

1.  Reliability of an MLCC:

Commercial BME capacitors satisfying Rt above will meet the 
minimum requirements for high-reliability applications
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Case Studies:  High-Performance BME MLCCs 

• 0.68 F, 16 V, 1206, mfr. B, passed 4000-hr
life testing at 125°C at 2X rated voltage

• Meets MIL-PRF-123
• Grain size ≈ 0.38 m
• 64 dielectric layers
• Dielectric thickness ≈ 6.29 m

• 2.2 F, 16 V, 0805, mfr. C, passed 4000-hr
life testing at 125°C at 2X rated voltage

• Meets MIL-PRF-123
• Nano-size grains ≈ 0.11 m
• 250 dielectric layers
• Dielectric thickness ≈ 3.85 m

When compared with PME MLCCs, high reliabilities can be attained
in BME MLCCs with thinner dielectrics.

C08X22516(BME) B12X68316 (BME)
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Case Studies:  High-Performance BME MLCCs 

• MLCC reliability can be empirically estimated using only 
microstructure and construction parameters N, d, ā, and 

• The microstructure parameters for thin dielectric BME MLCCs was 
assumed based on an Intel report.

• Structural parameters for all other MLCCs were experimentally 
determined.

Thin Dielectric BME D08X10425 (PME) C08X22516 (BME) B12X68316 (BME)

N 200 30 250 64

d (m) 1.00 20.2 3.85 6.29

ā (m) 0.10 0.61 0.11 0.38

Α 6.0 5.0 6.0 6.0

99.9999% 100.0000% 100.0000% 100.0000%

99.9800% 99.9999% 99.9999% 99.9997%



Case Studies:  An Intel Application
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• 0.045 m Si processing 
technology

• 140 MLCCs per package
• System reliability:  Rs

Thin Dielectric BME D08X10425 (PME) C08X22516 (BME) B12X68316 (BME)

99.9999% 100.0000% 100.0000% 100.0000%

99.9800% 99.9999% 99.9999% 99.9997%

97.2388% 99.9895% 99.9887% 99.9569%

Dielectric

MLCC

System



Summary
• BMEs represent a commercial technology.  Not all BME capacitors   

can be qualified for high-reliability applications.

• A minimum dielectric thickness requirement that has been used for 
making high-reliability PME capacitors is not applicable to BME 
capacitors.  BME capacitors have more complicated structures than 
PME capacitors:

 Number of dielectric layers N in a BME capacitor is extremely high;
 Dielectric thickness d is extremely thin;
 Grain size varies from 0.5 m down to 0.1 m.

• The reliability of a BME MLCC has been found to be directly related to 
the microstructure parameter N (# of dielectric layers)

and        (# of stacked grains per dielectric layer).

• A reliability model regarding the microstructure of a BME MLCC is 
developed and has been applied to eliminate the BME capacitors with 
potential reliability concerns.

• More reliability evaluations regarding the microstructure of BME 
capacitors are to be performed.
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